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COMBINING ASYMPTOTIC EXPANSIONS IN PROBLEMS OF THE 

FILTRATION OF A GAS-- CONDENSATE MIXTURE 

M. B. Panfilov UDC 622.276.031:532.5.001 

The asymptote-combination method is used in the problem of the startup of a gas-- 
condensate borehole in a porous bed, which is characterized as a singularly per- 
turbed problem. An analytical solution is constructed. 

Methods of singular perturbation, which have been intensely developed in recent years, 
offer great possibilities for the solution of nonlinear problems of filtration theory [1-4]. 
Primarily, this involves the problem of the filtration of a mixture of several fluids with 
phase transformations, when the process is determined by many factors, and their relative 
role differs in different regions of motion. The solutions of such problems include sharp 
transitions in narrow intervals (boundary layers). 

In the present work, the possibilities of the combined-asymptote method in filtration 
theory are investigated for gas--condensate systems. 

i. Formulation of the Problem of Startup of a Gas--Condensate Borehole. The process is 
investigated within the framework of a modified binary model [5, 6], in which it is assumed 
that the weight concentrations of the components ~n the liquid phase are constant 

0 
m -~-[O Z s + pg(1 --s)] + div (ptlV z ~pgV)=O, (1) 
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otOs ( ) P g  dpdq [pg Op] "~ m - - =  - -  g r a d p + m ( 1 - - s ) - ~  - -d ivVz:  , (2) 

-~ k k l ( s )  gradp, Vg = - -  kkg(s) gradp. (3) 

I t  f o l l o w s  f rom Eq. (2) t h a t  t h e  change  i n  s a t u r a t i o n  ( t e rm I )  i s  d e t e r m i n e d  by t h e  
p h a s e  t r a n s i t i o n  when t h e  gas  r e a c h e s  a p o i n t  w i t h  a new p r e s s u r e  v a l u e  ( I I ) ,  t h e  change  i n  
pressure over time (III), and the motion of the condensate itself (IV). 

In addition, it is assumed that the viscosity of the two phases and the density of the 

- A ~2 P2), A - qmc/(P~c--P~c) liquid phase are constant, and that 0g = 2y_p, y = const; q(p) - ( bC ~ > 2. 
when p ~ [Pmc, Pbc ]; ~g(S) = (i- s), k~(s) = sB, where a const; 

The boundary and initial conditions of the problem of startup with constant mass flow 
rate G of a borehole in a homogeneous axisymmetric bed of power h with constant pressure 
at the contour and an initial unperturbed state for Eqs. (1-3) in cylindrical coordinates 
take the form 

P ir, O)= Po, s(r, O)= O, p(r e , t )=  Po, s(re, t )=  O, 

~g 27[~/p J l r = r  w 

As r w * 0, r c -> ~, the problem is self-similar and may be formulated as follows: 

2 1AT{I(1 - -  s) ~ + X,X~s~T -~/21 ~T'}' = --~z (1 --s) T' --- 2~Zs ' (T - -  X, ]AT), 

- -  ~2s' = 2~,3~ ( 1 - -  s) ~ (T')2+ 22~3~ (1 --  s) V'TT'  + "~ (~fiT -1/~ 

r ( ~ )  = 1, s(oo) = 0, 

lira ~T' [(I --  s) ~ -[- %1%2s~T -1/~ = e, 
~0  

where T(~) = p~/p~; r = r2/• XL = 01/Pg(Po); Xa = ~g/~l! X3 = I/=AP~; 
= kpo/m~g. It is assumed that po = Pbc" 

On account of the presence of the radical r the problem is incorrectly posed, since 
there does not exist a solution satisfying the condition in Eq. (7) at the point ~ = 0 [7]. 
The Barenblatt "expanding-borehole" method may be used for regularization. A different 
approach is used here: the radical r is always understood to mean the partial sum of its 
binomial expansion 

N 

(4) 

(5) 

(6) 

(7) 

= GVg/~khpo0g(Po); 

This allows the condition in Eq. (7) to be retained at the same point E = O. 

In practice, the parameter e is always small (~ ~ 10-5-10-~), which allows the asymptote 
of the solution to be investigated as e ~ 0. The simplest regular small-parameter method 
was used earlier in analogous problems of single-phase filtration [8, 9] and also two-phase 
filtration without phase conversions [i0]. In the presence of phase transition, the problem 
is singularly perturbed. 

2. External Expansion. The expansion of the solution suitable in the external region 
where ~ >> 0 is obtained by the direct use of the small-parameter method. Assume that 

T(~; e) = 1  + 2 eh Tc(~)' s(~; e) = 2 eh S c(~)" 
k = l  h ~ l  

The boundary conditions take the form 

Te (oo) = 0, %(0o)=0,  vk; (8) 
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~T~[~=0 = 1, [~T~--~SlTII~= o = 0, etc. (9)  

S u b s t i t u t i o n  i n t o  Eqs .  ( 4 ) - ( 7 )  l e a d s  t o  a l i n e a r  s y s t e m  f o r  e a c h  p a i r  (To,  S c ) .  The 
fo rm o f  t h e  e x p a n s i o n  s a t i s f y i n g  Eq. (8)  i s  a s  f o l l o w s :  

+ 4 ( ~ - - 1 ) E i ( - - 2 ~ )  + 2 [2C2- - (=- - l )exp( - -~Z) ]Ei ( - -~z)}+O(e3) ,  (10) 

o 2 s (~) . . . . . .  eC~)~aEi (--co~ 2) -~- e-I, aC, {exp (--2m~ 2) ~-z--i/)~a ()~--~z) E i z (---o~ z) -6 

2 [co - -  )~a (~z - -  1)] Ei (--2co~ z) + ~v a [(cz - -  1) exp (--co~ z) --2C~] Ei (--~o~z)} .60  (ea), 
(ll)  

where El(u) is an integral exponential; m = i/4[l--4%s(%t--l)]. 

All the constants C i cannot be determined from the second boundary condition in Eq. (9). 
In particular, the second term in Eq. (I0) does not satisfy this condition with any choice 
of the constant C=. This means that the expansion constructed does not converge to the pre- 
cise solution in the vicinity of the point $ = 0. 

It may be shown that for the true solution ~ = 0 is a branch point: l-- s ~ ~c; for the 
external expansion in Eq. (ii), on the other hand, it is a pole [ii]. The type of singular- 
ity is variable. Such problems are characterized by the presence of the complex ~(~+s), k>l 
in front of the principal derivative rather than the small parameter s, as in the classical case [i, 
3], or the factor (~ + ~), as in the Laitkhill problem [4].* Therefore, when e = O, instead 
of a reduction in order of the equation or a shift in the singularity from the point ~ =-- e 
to the point ~ = O, there is a degeneration of singularity type at the point ~ = 0. The 
method of combining asymptotic expansions may be used to solve such problems. 

3. Transition to Internal Variables. The next step is to construct the internal expan- 
sion which is the asymptote of the accurate solution in regions of small ~, such that ~ = 
O(A(~)),where b § +0 as ~ § +0. In the new region ~ is replaced by the variable n = ~/b, 
which is independent of e. The desired functions are written in the form 

T,  (aq; s) ~ T0]A; s) = 1 -6 Z ai (s) T,i  (~1), ( 1 2 ' )  
i = l  

s,  (~1; e )~S( r lA ;  ~)= ~ bi(e)s,i(~l). (12") 
i=l 

Here ai+l = o(ai); bi+t = o(bi) ; al = o(i); bt = o(I). 

It is required to determine A(E) and the sequences {a i} and {bi}. 
in the new variables takes the form 

The initial problem 

~ -I/2 , 2 VT,. {NT$ [ ( I - -  s ,)  ~ -6 %I~2s,T, ]} = - -  [(1 - -  s.) T$ + 2s~ (T, - - -~  VT-)] NzAz, (13)  
/ 

--n~s~A~ = 2 ~  (1 --s,)~(T$) ~ + 2Z~n (1 - -  s,) V ~ r $ a ~  + ~ (ns~T~'/~T~) ', 
" - - ' f  ~ ~ I] I I I  IV (14) 

lira ~T$ [(I--s,) ~ -6 ~,~2s{ TT' /21 = e. 
~ o  (15) 

The external conditions for the internal problem disappear. 

The form of the first terms of the sequence {a i} is found from the boundary conditions 
and the combination conditions. To determine ax, the external expansion of T(~) in terms of 
the variable n is written 

T (05; e) = 1 + Cle In h (e) + 1/2C18 (In ~o~ ~ + Ce) -6 . . . .  

and hence it follows that a logarithmic term must appear in the internal expansion 

*This representation of Eq. (5) is obtained upon eliminating the function T (~). 
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at(e) = O(e lnA(e) ) ,  while T,  t01) = const. 

Now a ,  i s  f o u n d  f r o m  Eq. ( 1 5 ) :  

(16) 

a ~ ( e ) = e .  (17)  

The determination of A(~) and {b i} is a nodal point in the solution of the problem. 
There are purely mathematical methods of finding these quantities, based on the analysis of 
the degeneration of the singularities of the solution [Ii]. However, in applied problems 
these methods may be successfully replaced by certain a priori physical considerations. 

Consider Eq. (14), where the numbering of terms is as in Eq. (2). In the internal 
region, i.e., close to the borehole, the velocity and pressure gradient are large; there- 
fore, it may be assumed that the change in saturation will be determined primarily by con- 
vective accumulation of the condensate (term II) and its partial removal from the bed (IV). 
These are the principal terms of the equation in the internal region. Term I is also a prin- 
cipal term, since otherwise the saturation distribution will be steady, which is an extremely 
particular case. Therefore, in the general case, two relations are obtained: 

s ~  o((~ s,) ~(T~5~5-- ~ -~/~ " ' . = - -  O ( ( , T ,  7 , 5 ) .  

S u b s t i t u t i n g  f r o m  Eq. (12)  and t a k i n g  a c c o u n t  o f  Eqs .  (16)  and ( 1 7 ) ,  i t  f o l l o w s  t h a t  

A (8) = e 1-1/2~, b 1 (~) = l / ~  (18 )  

It follows from Eqs, (16) and (18) that ax(e) = elne. Simple switching of variants 
leads further to the conclusion that as(e) = e~+~/6, 

4. Internal Expansion. Substitution of the results obtained into Eqs. (13), (14) and 
further refinement of the terms of the asymptotic sequence lead to the expressions 

T , ( N ) ~ l + D j e l n e + c ( D z ! n N + B ~ )  4c-el+'/~(cxDo. d '] -}-DslnB+B~) +et+~/OTs(N)'  

s ,  0l) ~ s~ /~s,~ 01) + d~/e's,~ (~), 

where the function s,: of the first approximation is found from the formula 

2~D2 
s ~  (~) ~ + ~..~O~n~,~' ' (zg) 

and the functions s*a and T,~ of the second approximation are found from the system 

s;x (n z + X~P~s~')-+ k~D~(~ -- 1)(s~,5's,2+~P~a (s~')'+ [eD3(s~,)' + 2L3D~(aD~s,~ + 2D3)/n = 0. ( 20" )  

The c o n s t a n t  D, = 1 i s  f o u n d  f r o m  t h e  i n t e r n a l  c o n d i t i o n  i n  Eq.  ( 1 5 ) .  The r e m a i n i n g  
c o n s t a n t s  and c o n d i t i o n s  f o r  t h e  d i f f e r e n t i a l  e q u a t i o n s  a r e  f o u n d  by  c o m b i n a t i o n  w i t h  t h e  
external expansion. The combination technique may be illustrated as follows. Introducing 
the "mean" coordinate x, which is of the order of unity in the region of overlap of the expan- 
sions 

X = ~/6 (~) = NA (85/6 (8),where 6 = o (1) and zX = o (6 (8)) as G-+0, 

the expansion is written in terms of the new variable, and represented in the form of asymp- 
totic series as e + O, with x fixed: 

r (X6; ~) = 1 ~- C1$ In 6 § i/,Cle ( ln o x  z + Ce) + . . . .  

T ,  (xS/A; e) = 1 ~- e In 6 ~- [D1 - -  (1 - -  i/2~)l ~ In e -~ e (ln x -~ B~) + . . .  

In the region where the expansionsoverlap, they coincide, and therefore C: = i, Dx = i-- x/a 8, 
Ba = x/a(in m + Ce). 

1150 



o7 ~'~ " ~  . / 

>.. 
s 

o o,,oog o, oo~ o, oo6 

Fig. i. Internal expansion of the func- 
tion s(g): i) second approximation; 2) 
first approximation; 3) asymptote of the 
first approximation as $ § 0. 

The combination procedure for the function s is somewhat complicated in view of the 
absence of an explicit expression for s in the internal region. A representation for the 
function s** in terms of the mean variable is found as follows. The derivative in Eq. (19) 
is written in terms of the variable x, and the resulting expression is regrouped in the form 
of an asymptotic series as e § 0, with fixed x, and then integrated. The functions s,2, T,~ 
are dealt with analogously. Finally, combination allows the constants Da = Ba = 0 to be 
found and boundary conditions to be established for Eqs. (19), (20): 

s,1 (oo) = O, s.2 (co) = O, r . ~  (co) = O, ~T.4In=~ = O, 

producing uniqueness of the functions s**, s,a, and T,~. 

The problem in Eqs. (19), (21) for s,1 is solved in quadratures: 

S,l 

0 

w h i l e  s , 2  and  T,~ a r e  f o u n d  n u m e r i c a l l y .  

As n § 0,  t h e  f o l l o w i n g  e x p r e s s i o n  may be  f o u n d  f r o m  Eq. (22)  f o r  s * * :  

(21) 

(22) 

S,~ ~ lrl 

where F is an Euler gamma function. 

The form of the internal expansion is shown in Fig. i. 

5. Intermediate Expansion. Analysis of the combination procedure shows that the first 
internal approximation only overlaps with the second external approximation, and there is no 
region where the first approximations of both expansions overlap (see Fig. 3). This means 
that there is some intermediate region where the true solution has an expansion that differs 
from the internal and external expansions even in the first term. It is constructed using 
the new coordinate ~ = ~/~(e), where A, + + 0 as c + + 0, and the new dependent functions 
T*(r ~) = T(g&1;s), s*(r e) = s(r a). 

The initial system of equations in the new variables takes the form in Eqs. (13)-(15) 
with the corresponding change in notation. The expansions for the functions T* and s* are 
sought in a form analogous to Eq. (12). For a,, a2, and also T~, as before, Eqs. (16) and 
(17) remain in force. It follows from Eq. (ii) that a logarithmic term may appear in the 
expansion of s*: 

bt(e) = O(~ lnA l ( e ) ) ,  while s~' (~) = const. (23 )  

Terms of the sequence {b i} and A, are again found from additional a priori considera- 
tions on the physics of the process. 

The change in saturation in the external region is determined solely by term III in 
Eq. (14) and in the internal region by terms II, IV. Therefore, in the intermediate region 
the principal terms should be III (which is combined with the external expansion), II (which 
is combined with the internal expansion), and I (or else the sum of the two nonlinear terms 
II and III of the same sign will be equal to zero, which is impossible). Therefore, 

(s*)'A~ .= 0 ((T*')2) __-- 0 (T*'A~), 
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Fig. 2. Intermediate expansion of the 
solution of the problem: i) second 
approximation; 2) first approximation. 

and hence 

Al(~) = ~ ,  b2(~ ) ~ e. (24) 

It is evident from Eq. (23) that hi(e) = ~inE. 

Substituting Eq. (24) into Eqs. (13) and (14), subsequent analysis of the sequences 
{a=} and {b.} and two-sided combination allows the first approximation of the intermediate 

l . 

expansion to be obtalned in the form 

T* (~) = 1 -1- t12e In ~ + ~l~e (21n~ + In ~ + Ce) + 0 (~ZlnZe), 

s* (~) = - -  ~ In e + i/3~ (~-z __ In ~ z  __ C~) + 0 (~Zln%). 

The second approximation, including terms of order ~alna~, ealBe and '~a, is not given 
in view of its complexity. 

The form and convergence of the intermediate expansion is illustrated in Fig. 2. 

6. Final Dependences for the Distributions of p and s. In the problem three regions are 
distinguished; in each one it is sufficient to use the first approximation. Passing to the 
variable ~, the first approximations of all the expansions are found to be as follows: extern- 
al region ~ = O(i): 

p2/pg ..~ 1 q- l/~Ei (--o~Z), s--- - -  ~)vaEi (--co,z), 

intermediate region E = O(/~: 

p2/p2 o ~ 1 + V2~ ( l n ~  z +Ce) ,  s . ~ - - - -  
82)k~ 

eX3 (In co~z -? C~); 

internal region $ = O(eX-I/aB). 

f /p~ ,-~ 1 + 1/2e (ln~o~ z + C e ) - a e  .i s (U;u e) du, 

0 
As ~ -+ O, Eqs .  ( 2 5 ) ,  (26)  a r e  s i m p l i f i e d :  

pZ/,bo ,-,-, I -I- ilo~ (In o),~2 + C~) 
" 2 @ + 1 ) ~  ) / l . ~  �9 r ( l /~ )~  ~3.s ) J! 

1/~+I 

(25) 

(26 )  

The convergence and overlapping of all the expansions is shown in Fig. 3. Data on the 
Karadag deposit are used in the calculations [12]. 

The first approximation differs from the second by no more than 2.2% for the saturation 
and even less for the pressure. 
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Fig. 3. Overlapping of expansions of the function 
s(g) (first approximations): I) internal; II) inter- 
mediate; III) external region. 

q/ 
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\ \ j 

Fig. 4. Influence of the form of the 
curves of phase permeability on the dis- 
tribution of condensate saturation: i) 

= i; 2) 2. 

7. Analysis of the Solutions. In the external region, the condensate saturation is 
negligibly small; nevertheless, the influence of the condensation process on filtration of 
the gas exists even in this region and is expressed in that the pressure falls more rapidly 
than in the absence of phase transitions. This happens because when some of the gas phase is 
converted to liquid, it is compressed and, correspondingly, the remainder of the gas phase ex- 
pands, leading to additional reduction in pressure. Formally, it is reflected in the ap- 
pearance of the factor ~i/4 in the piezoconduction coefficient. 

In the intermediate region the condensate saturation reaches perceptible values, but 
in fact only the gas phase moves. The accumulation of condensate in pores occurs not only 
because of the fall in pressure over time, but also because of the pressure gradients forc- 
ing the gas to the points of lower pressure associated with condensation. This process may 
be called convective mass transfer. It obviously differs significantly from the quasistatic 
process occurring in a PVT bomb. 

In the internal region both phases move. The intensity of convective mass transfer is 
higher than the rate of condensate removal from the plate, which leads to sharp rise in sat- 
uration on leaving the intermediate region. However, the increase in saturation over time 
is slow. 

The parameters ~ and 8 influence the pressure distribution equally. The distribution 
of the saturation is influenced significantly by the form of the curve kz(s), but is prac- 
tically independent of the form of the curve k~(s): In the first approximation, Eq. (26), 
the parameter ~ does not appear at all (Fig. 4)~ 
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It follows from the solutions obtained that with sufficient accuracy the motion of the 
gas phase over the whole region may be described by the equation 

~--/-- r ar ~ ' 

% 
where • E • is the modified piezoconduction coefficient, which now increases with in- 
crease in condensation intensity %3 and density ratio %1. 

NOTATION 

p, pressure; p, density; ~, dynamic viscosity; q(p), isotherm of contact condensation 
of the bed mixture (volume ratio of the liquid phase in a PVT bomb at pressure p and the 
system at Pbc); s, condensate saturation of the rock space; T, dimensionless square of the 
pressure; m, porosity; k, bed permeability; ~(s), relative phase permeability; V, filtra- 
tion-rate vector; e, dimensionless borehole output (small parameter): ~, B, parameters of 
the phase-permeability curves for gas and liquid, respectively; ~ , piezoconduction of bed; 
t, time; r, radial coordinate; $, ~, ~, self-similar external, intermediate, and internal 
independent variables; Ce = 0.5772..., Euler constant. Subscripts: g, gas; l, liquid; bc, be- 
ginning of condensation; mc, maximum condensation; w, borehole wall; c, external contour of 
bed; 0, initial state; superscript asterisk denotes intermediate region; subscript asterisk 
denotes internal region. 
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